$\large D(60, 90)$
$\large n(60, 90)$
	
	
|  | $\Huge 60$ |  |  |  |  |  | $\Huge 90$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 30$ |  |  |  | $\huge 2$ | $\times$ | $\huge 45$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 2$ | $\times$ | $\huge 15$ |  |  |  | $\huge 3$ | $\times$ | $\huge 15$ |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ | 
|  |  | $\huge 3$ | $\times$ | $\huge 5$ |  |  |  | $\huge 3$ | $\times$ | $\huge 5$ | 
	
	

$\large D(60, 90)=2\times 3 \times 5= 30$
	
	
$\large n(60, 90)=2\times 2 \times 3 \times 3 \times 5= 180$
	
Pozn: V rozkladech jsou dvojky, trojky a pětky. Číslo 2 je nejvíce 2x, číslo 3 je také 2x a číslo 5 1x.
	
$\large D(36, 48)$
$\large n(36, 48)$
	
|  | $\Huge 36$ |  |  |  |  |  | $\Huge 48$ |  |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | 
| $\huge 2$ | $\times$ | $\huge 18$ |  |  |  | $\huge 2$ | $\times$ | $\huge 24$ |  |  |  | 
|  | $\large\swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  |  | 
|  | $\huge 2$ | $\times$ | $\huge 9$ |  |  |  | $\huge 2$ | $\times$ | $\huge 12$ |  |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  | 
|  |  | $\huge 3$ | $\times$ | $\huge 3$ |  |  |  | $\huge 2$ | $\times$ | $\huge 6$ |  | 
|  |  |  |  |  |  |  |  |  | $\large\swarrow$ |  | $\large\searrow$ | 
|  |  |  |  |  |  |  |  |  | $\huge 2$ | $\times$ | $\huge 3$ | 
	
	
$\large D(36, 48)=2\times 2\times 3= 12$
$\large n(36, 48)=2\times 2 \times 2 \times 2 \times 3 \times 3 = 144$
	
$\large D(60, 75)$
$\large n(60, 75)$
	
|  | $\Huge 60$ |  |  |  |  |  | $\Huge 75$ |  |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | 
| $\huge 2$ | $\times$ | $\huge 30$ |  |  |  | $\huge 3$ | $\times$ | $\huge 25$ |  |  |  | 
|  | $\large\swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  |  | 
|  | $\huge 2$ | $\times$ | $\huge 15$ |  |  |  | $\huge 5$ | $\times$ | $\huge 5$ |  |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  |  |  |  |  | 
|  |  | $\huge 3$ | $\times$ | $\huge 5$ |  |  |  |  |  |  |  | 
	
	
$\large D(60, 75)=3\times 5= 15$
$\large n(60, 75)=2\times 2 \times 3 \times 5 \times 5 = 300$
	
$\large D(35, 56)$
$\large n(35, 56)$
	
|  | $\Huge 35$ |  |  |  |  |  | $\Huge 56$ |  |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | 
| $\huge 5$ | $\times$ | $\huge 7$ |  |  |  | $\huge 2$ | $\times$ | $\huge 28$ |  |  |  | 
|  |  |  |  |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
|  |  |  |  |  |  |  | $\huge 2$ | $\times$ | $\huge 14$ |  |  | 
|  |  |  |  |  |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  | 
|  |  |  |  |  |  |  |  | $\huge 2$ | $\times$ | $\huge 7$ |  | 
	
	
$\large D(35, 56)=7$
$\large n(35, 56)=2\times 2 \times 2 \times 5 \times 7 = 280$
	
$\large D(120, 135)$
$\large n(120, 135)$
	
|  | $\Huge 120$ |  |  |  |  |  | $\Huge 135$ |  |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  |  |  | 
| $\huge 2$ | $\times$ | $\huge 60$ |  |  |  | $\huge 3$ | $\times$ | $\huge 45$ |  |  |  | 
|  | $\large\swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  |  | 
|  | $\huge 2$ | $\times$ | $\huge 30$ |  |  |  | $\huge 3$ | $\times$ | $\huge 15$ |  |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ |  | 
|  |  | $\huge 2$ | $\times$ | $\huge 15$ |  |  |  | $\huge 3$ | $\times$ | $\huge 5$ |  | 
|  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  |  |  |  | 
|  |  |  | $\huge 3$ | $\times$ | $\huge 5$ |  |  |  |  |  |  | 
	
	
$\large D(120, 135)=3\times 5= 15$
$\large n(120, 135)=2\times 2 \times 2 \times 3 \times 3 \times 3 \times 5= 1080$