Nejmenší společný násobek využíváme při hledání společného jmenovatele a při řešení slovních úloh, kde se například řeší stavba čtverce či obdélníku (krychle či kvádru) z různě velkých bloků; anebo úlohy kde, se hledá, kdy se znovu setkají vozidla, jež vyrážela ve stejný okamžik, a každému z nich objetí celé trasy zabere jinou dobu a podobně.
$\large n(60, 45)$
|
$\Huge 60$
|
|
|
|
|
|
$\Huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 30$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 15$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
|
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
|
|
|
V rozkladech jsou dvojky, trojky a pětky. Číslo 2 je nejvíce 2x, číslo 3 je také 2x a číslo 5 1x.
$\large n(60, 45)=2\times 2 \times 3 \times 3 \times 5= 180$
$\large n(54, 90)$
|
$\Huge 54$
|
|
|
|
|
|
$\Huge 90$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 27$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 9$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 3$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
V rozkladech jsou dvojky, trojky a pětky. Číslo 2 je nejvíce 1x, číslo 3 je 3x a číslo 5 1x.
$\large n(54, 90)=2\times 3 \times 3 \times 3 \times 5= 270$
$\large n(42, 56)$
|
$\Huge 42$
|
|
|
|
|
|
$\Huge 56$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 21$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 28$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 14$
|
|
|
|
|
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
|
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 7$
|
$\large 42=2 \times 3 \times 7$
$\large n(42, 56)=2\times 2 \times 2 \times 3 \times 7= 168$
$\large n(84, 126)$
|
$\Huge 84$
|
|
|
|
|
|
$\Huge 126$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 42$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 63$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 21$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 21$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
$\large 84=2 \times 2 \times 3 \times 7$
$\large n(84, 126)=2\times 2 \times 3 \times 3 \times 7= 252$
$\large n(30, 45)$
|
$\Huge 30$
|
|
|
|
|
|
$\Huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 15$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
$\large 30=2 \times 3 \times 5$
$\large n(30, 45)=2\times 3 \times 3 \times 5= 90$
$\large n(48, 80)$
|
$\Huge 48$
|
|
|
|
|
|
$\Huge 80$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 24$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 40$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 12$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 20$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 6$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 10$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large\swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 3$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 5$
|
$\large 48=2 \times 2 \times 2 \times 2 \times 3$
$\large n(48, 80)=2\times 2 \times 2 \times 2 \times 3 \times 5= 240$