Největší společný dělitel se využívá při vytýkání a při řešení slovních úloh, kde řešíme například rozdělení různých květin do kytic, bonbónů do bonboniér nebo rozdělení plochy na stejně velké dílky.
$\large D(60, 45)$
|
$\Huge 60$
|
|
|
|
|
|
$\Huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 30$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 15$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
|
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
|
|
|
$\large D(60, 45)=3 \times 5= 15$
$\large D(54, 90)$
|
$\Huge 54$
|
|
|
|
|
|
$\Huge 90$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 27$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 9$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 3$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
$\large D(54, 90)=2 \times 3 \times 3= 18$
$\large D(42, 56)$
|
$\Huge 42$
|
|
|
|
|
|
$\Huge 56$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 21$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 28$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 14$
|
|
|
|
|
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
|
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 7$
|
$\large 42=2 \times 3 \times 7$
$\large D(42, 56)=2\times 7= 14$
$\large D(84, 126)$
|
$\Huge 84$
|
|
|
|
|
|
$\Huge 126$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 42$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 63$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 21$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 21$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 7$
|
$\large 84=2 \times 2 \times 3 \times 7$
$\large D(84, 126)=2\times 3 \times 7= 42$
$\large D(30, 45)$
|
$\Huge 30$
|
|
|
|
|
|
$\Huge 45$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 2$
|
$\times$
|
$\huge 15$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 15$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
|
|
$\huge 3$
|
$\times$
|
$\huge 5$
|
|
$\large 30=2 \times 3 \times 5$
$\large D(30, 45)=3 \times 5= 15$
$\large D(48, 80)$
|
$\Huge 48$
|
|
|
|
|
|
$\Huge 80$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 24$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 40$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 12$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 20$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 6$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 10$
|
|
|
|
|
$\large \swarrow$
|
|
$\large\searrow$
|
|
|
|
$\large\swarrow$
|
|
$\large\searrow$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 3$
|
|
|
|
$\huge 2$
|
$\times$
|
$\huge 5$
|
$\large 48=2 \times 2 \times 2 \times 2 \times 3$
$\large D(48, 80)=2\times 2 \times 2 \times 2 \times = 16$