Největší společný dělitel se využívá při vytýkání a při řešení slovních úloh, kde řešíme například rozdělení různých květin do kytic, bonbónů do bonboniér nebo rozdělení plochy na stejně velké dílky.
$\large D(60, 45)$
	
|  | $\Huge 60$ |  |  |  |  |  | $\Huge 45$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 30$ |  |  |  | $\huge 3$ | $\times$ | $\huge 15$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 2$ | $\times$ | $\huge 15$ |  |  |  | $\huge 3$ | $\times$ | $\huge 5$ |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  |  |  |  | 
|  |  | $\huge 3$ | $\times$ | $\huge 5$ |  |  |  |  |  |  | 
	
	

$\large D(60, 45)=3 \times 5= 15$
	
$\large D(54, 90)$
	
|  | $\Huge 54$ |  |  |  |  |  | $\Huge 90$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 27$ |  |  |  | $\huge 2$ | $\times$ | $\huge 45$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 3$ | $\times$ | $\huge 9$ |  |  |  | $\huge 3$ | $\times$ | $\huge 15$ |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ | 
|  |  | $\huge 3$ | $\times$ | $\huge 3$ |  |  |  | $\huge 3$ | $\times$ | $\huge 5$ | 
	
	

$\large D(54, 90)=2 \times 3 \times 3= 18$
	
	
$\large D(42, 56)$
	
|  | $\Huge 42$ |  |  |  |  |  | $\Huge 56$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 21$ |  |  |  | $\huge 2$ | $\times$ | $\huge 28$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 3$ | $\times$ | $\huge 7$ |  |  |  | $\huge 2$ | $\times$ | $\huge 14$ |  | 
|  |  |  |  |  |  |  |  | $\large \swarrow$ |  | $\large\searrow$ | 
|  |  |  |  |  |  |  |  | $\huge 2$ | $\times$ | $\huge 7$ | 
	
$\large 42=2 \times 3 \times 7$
	
$\large D(42, 56)=2\times 7= 14$
$\large D(84, 126)$
	
|  | $\Huge 84$ |  |  |  |  |  | $\Huge 126$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 42$ |  |  |  | $\huge 2$ | $\times$ | $\huge 63$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 2$ | $\times$ | $\huge 21$ |  |  |  | $\huge 3$ | $\times$ | $\huge 21$ |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ | 
|  |  | $\huge 3$ | $\times$ | $\huge 7$ |  |  |  | $\huge 3$ | $\times$ | $\huge 7$ | 
	
$\large 84=2 \times 2 \times 3 \times 7$
	
$\large D(84, 126)=2\times 3 \times 7= 42$
$\large D(30, 45)$
	
|  | $\Huge 30$ |  |  |  |  |  | $\Huge 45$ |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
| $\huge 2$ | $\times$ | $\huge 15$ |  |  |  | $\huge 3$ | $\times$ | $\huge 15$ |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  | $\huge 3$ | $\times$ | $\huge 5$ |  |  |  | $\huge 3$ | $\times$ | $\huge 5$ |  | 
	
$\large 30=2 \times 3 \times 5$
	
$\large D(30, 45)=3 \times 5= 15$
$\large D(48, 80)$
	
|  | $\Huge 48$ |  |  |  |  |  | $\Huge 80$ |  |  |  |  | 
| $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | 
| $\huge 2$ | $\times$ | $\huge 24$ |  |  |  | $\huge 2$ | $\times$ | $\huge 40$ |  |  |  | 
|  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  | 
|  | $\huge 2$ | $\times$ | $\huge 12$ |  |  |  | $\huge 2$ | $\times$ | $\huge 20$ |  |  | 
|  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  | 
|  |  | $\huge 2$ | $\times$ | $\huge 6$ |  |  |  | $\huge 2$ | $\times$ | $\huge 10$ |  | 
|  |  |  | $\large \swarrow$ |  | $\large\searrow$ |  |  |  | $\large\swarrow$ |  | $\large\searrow$ | 
|  |  |  | $\huge 2$ | $\times$ | $\huge 3$ |  |  |  | $\huge 2$ | $\times$ | $\huge 5$ | 
	
$\large 48=2 \times 2 \times 2 \times 2 \times 3$
	
$\large D(48, 80)=2\times 2 \times 2 \times 2 \times = 16$