1.
$\huge \frac{x+1}{3}-\frac{y+2}{4}=\frac{2(x-y)}{5}$
$\huge \frac{x-3}{4}-\frac{y-3}{3}=2y-x$
	
| $\frac{x+1}{3}-\frac{y+2}{4}=\frac{2(x-y)}{5}\;/\times60$ | $\frac{x-3}{4}-\frac{y-3}{3}=2y-x\;/\times12$ | 
| $20(x+1)-15(y+2)=24(x-y)$ | $3(x-3)-4(y-3)=12(2y-x)$ | 
| $20x+20-15y-30=24x-24y$ | $3x-9-4y+12=24y-12x$ | 
| $-4x+9y=10$ | $15x-28y=-3$ | 
|  |  | 
| $-4x+9y=10\;/\times15$ | $-4x+9y=10$ | 
| $\underline{15x-28y=-3}\;/\times4$ | $-4x+54=10$ | 
| $-60x+135y=150$ | $-4x=-44$ | 
| $\underline{60x-112y=-12}$ | $x=11$ | 
| $23y=138$ |  | 
| $y=6$ | $\large[x;y]=[11;6]$ | 
	
2.
$\huge\frac{2x-y+3}{3}-\frac{x-2y+3}{4}=4$
$\huge\frac{3x-4y+3}{4}+\frac{4x-2y-9}{3}=4$
	
| $\frac{2x-y+3}{3}-\frac{x-2y+3}{4}=4\;/\times12$ | $\frac{3x-4y+3}{4}+\frac{4x-2y-9}{3}=4\;/\times12$ | 
| $4(2x-y+3)-3(x-2y+3)=48$ | $3(3x-4y+3)+4(4x-2y-9)=48$ | 
| $8x-4y+12-3x+6y-9=48$ | $9x-12y+9+16x-8y-36=48$ | 
| $5x+2y=45$ | $25x-20y=75$ | 
|  |  | 
| $5x+2y=45\;/\times-5$ | $5x+2y=45$ | 
| $\underline{25x-20y=75}$ | $5x+10=45$ | 
| $-25x-10y=-225$ | $5x=35$ | 
| $\underline{25x-20y=75}$ | $x=7$ | 
| $-30y=-150$ |  | 
| $y=5$ | $\large[x;y]=[7;5]$ | 
	
3.
$\huge\frac{x+1}{y+3}=\frac{1}{2}$
$\huge\frac{x+2}{2y+3}=\frac{1}{3}$
	
| $\frac{x+1}{y+3}=\frac{1}{2}\;/\times2(y+3)$ | $\frac{x+2}{2y+3}=\frac{1}{3}\;/\times3(2y+3)$ | 
| $2(x+1)=y+3$ | $3(x+2)=2y+3$ | 
| $2x+2=y+3$ | $3x+6=2y+3$ | 
| $2x-y=1$ | $3x-2y=-3$ | 
|  |  | 
| $2x-y=1\;/\times-2$ | $2x-y=1$ | 
| $\underline{3x-2y=-3}$ | $10-y=1$ | 
| $-4x+2y=-2$ | $-y=-9$ | 
| $\underline{3x-2y=-3}$ | $y=9$ | 
| $-x=-5$ |  | 
| $x=5$ | $y\neq-3$ | 
|  | $y\neq -\frac{3}{2}$ | 
|  | $\large[x;y]=[5;9]$ | 
	
4.
$\huge\frac{4}{x-3y}=\frac{7}{9x+2y}$
$\huge\frac{3}{2x+y}=\frac{9}{x-y+1}$
	
| $\frac{4}{x-3y}=\frac{7}{9x+2y}\;/\times(x-3y)(9x+2y)$ | $\frac{3}{2x+y}=\frac{9}{x-y+1}$ | 
| $4(9x+2y)=7(x-3y)$ | $\frac{3}{-2y+y}=\frac{9}{-y-y+1}$ | 
| $36x+8y=7x-21y$ | $\frac{3}{-y}=\frac{9}{-2y+1}\;/\times(-y)(-2y+1)$ | 
| $29x=-29y$ | $3(-2y+1)=-9y$ | 
| $x=-y$ | $-6y+3=-9y$ | 
|  | $y=-1$ | 
| $x=1$ |  | 
|  | $y\neq-\frac{y}{2}$ | 
|  | $y\neq y-1$ | 
|  | $\large[x;y]=[1;-1]$ | 
	
5.
$\huge x+2y+z=9$
$\huge 2x-3y-z=-12$
$\huge 5x+8y+2z=15$
	
| $x+2y+z=9$ | $x=9-2y-z$ | $x+z=9$ | 
| $2x-3y-z=-12$ |  | $\underline{2x-z=-12}$ | 
| $\underline{5x+8y+2z=15}$ |  | $3x=-3$ | 
| $2(9-2y-z)-3y-z=-12$ |  | $x=-1$ | 
| $\underline{5(9-2y-z)+8y+2z=15}$ |  |  | 
| $18-4y-2z-3y-z=-12$ |  | $z=9-x-2y$ | 
| $\underline{45-10y-5z+8y+2z=15}$ |  | $z=9+1$ | 
| $-7y-3z=-30$ |  | $y=10$ | 
| $\underline{-2y-3z=-30}\;/\times-1$ |  |  | 
| $-7y-3z=-30$ |  | $\large[x;y;z]=[-1;0;10]$ | 
| $\underline{2y+3z=30}$ |  |  | 
| $-5y=0$ |  |  | 
| $y=0$ |  |  | 
	
6.
$\huge x+2y+3z=5$
$\huge 2x-y-z=1$
$\huge x+3y+4z=6$
	
| $x+2y+3z=5$ | $x=5-2y-3z$ | 
| $2x-y-z=1$ |  | 
| $\underline{x+3y+4z=6}$ | $x=6-3y-4z$ | 
| $5-2y-3z=6-3y-4z$ |  | 
| $\underline{y=1-z}$ |  | 
| $x+2(1-z)+3z=5$ |  | 
| $\underline{2x-(1-z)-z=1}$ |  | 
| $x+2-2z+3z=5$ |  | 
| $\underline{2x-1+z-z=1}$ |  | 
| $x+z=3$ |  | 
| $x=1\;\;z=2\;\;y=-1$ | $\large[x;y;z]=[1;-1;2]$ | 
	
7.